
Main Page Related Pages Data Structures Files

scTDCLibrary

scTDC library interface

Version
1.3000.0

This is documentation for scTDC library API. scTDC library is used for access to Surface Concept GmbH Time to Digital Converter and Delay Line

Detector devices.

Intro
Starting from the version 1.4.0 of scTDC library new abstraction was implemented to extract tdc and dld data from the device. The main mechanism

for that is something which is called data pipe. Data pipes can be of different type and have different parameter. Every data pipe get pipe ident

number when is opened with sc_pipe_open2() function. There could be as many pipes opened as application requires. After measure is started

with sc_start_measure2() application should read the data from the data pipe with the sc_pipe_read2() function. When operation is finished data

pipe should be closed with sc_pipe_close2().

Here is minimal example how things should be done:

//c99 compiler must be used
#include <scTDC.h>
#include <stdio.h>

int main()
{
 int dd = sc_tdc_init_inifile("tdc_gpx3.ini");
 if (dd < 0) { // could not initialise hardware. dd contains error code
 char error_description[ERRSTRLEN];
 sc_get_err_msg(dd, error_description);
 puts(error_description);
 return dd;
 } else { //dd is device descriptor which could be used for any other operation
 double tdc_binsize;
 int ret = sc_tdc_get_binsize2(dd, &tdc_binsize);
 if (ret < 0) { //if there is error happened.
 puts("could not get binsize");
 return ret;
 }
 printf("tdc binsize is %lf\n", tdc_binsize);

 //now lets try to open tdc_histo pipe

 struct sc_pipe_tdc_histo_params_t params;
 params.depth = BS32; // 32 bit per time channel (point) in the histogram
 params.channel = 0; // pipe for channel #0 is requested
 params.modulo = 0; // modulo is off
 params.binning = 4; // histogram binning is set to 4
 params.offset = 1000; // histogram starts from the 1000 time bins (see sc_tdc_get_binsize2()).
 params.size = 2000; // histogram size is 2000 time bins (but note binning)!
 params.accumulation_ms = 0; // accumulation is off
 params.allocator_owner = NULL; // parameter for allocator cbf
 params.allocator_cb = NULL; // internal allocator is used

 int pipe_id = sc_pipe_open2(dd, TDC_HISTO, (void *)¶ms);
 if (pipe_id < 0) { //pipe_id contains error code
 char error_description[ERRSTRLEN];
 sc_get_err_msg(pipe_id, error_description);
 puts(error_description);
 return pipe_id;
 }

 sc_tdc_start_measure2(dd, 1000); //start 1000 ms measure

 unsigned *tdc_histo;
 ret = sc_pipe_read2(dd, pipe_id, (void *)&tdc_histo, -1); //after the call
 //tdc_histo pointer will point on the histogram data. The place for the
 //histogram will be allocated by internal allocator and will be destroyed
 //at next call. -1 means wait infinitely (2^32 milliseconds).

 if (ret < 0) { //note that this could be timeout as well
 char error_description[ERRSTRLEN];
 sc_get_err_msg(pipe_id, error_description);
 puts(error_description);
 return ret;
 }

 //now we have data, may process it or show somewhere

 sc_pipe_close2(dd, pipe_id);

 //here data pipe is closed. NOTE: tdc_histo now points to nowhere. If
 //application needs tdc_data at this point - copy it before calling
 //sc_pipe_close2().

 sc_tdc_deinit2(dd); // release hardware and resources.

https://www.surface-concept.com/downloads/apiDoc/html/pages.html
https://www.surface-concept.com/downloads/apiDoc/html/annotated.html
https://www.surface-concept.com/downloads/apiDoc/html/files.html
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#afbccffe9f8d461337272c77b1e8d99e9
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#affe773d3d4aacb4db040219501abdf15
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a316ec3f4f28ba07db666d6e31d0758a6
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a11d123aaa034fedaaa321e90a9f28176
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a6a3ce6445e74359463ada0639c304b7d
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__tdc__histo__params__t.html
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__tdc__histo__params__t.html#a8da63a6e408a5a42333b03c4328a9810
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c__types_8h.html#a0ae49d912d694db36d79ce9cc88d5e6eaaff04ad1d507e6ce650ed3fd28dcb721
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#afbccffe9f8d461337272c77b1e8d99e9
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c__types_8h.html#a207ff2479453c33d928ad188b7f43ad2a62a23cd0d43c32ca8763b706e8d278d7
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a17cad5640ea7fda18cac602590b096ba
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#affe773d3d4aacb4db040219501abdf15
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a316ec3f4f28ba07db666d6e31d0758a6
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a292b239599362739468841af6ce90850

 return 0;
 }
}

Configuration
To configure scTDC1 library application must supply inifile and firmware file (both supplied with the device). Inifile contains information about

firmware file which will be used. That's why sc_tdc_init_inifile2() call takes only one parameter which is the name of the inifile. sc_tdc_init_inifile2()

call returns positive integer number which serves as a device descriptor and must be user in all other calls related to the configured device.

Negative returned value means error. There can be text description of the error obtained with the sc_get_err_msg() call.

Start Measure
sc_tdc_start_measure2() is used to start measure procedure. After the call device goes to the measurement state, extracts data from the device

analizes it and transfers to the application through data pipes which must be configured previously. See Extracting Data section for more info how

to operate with data pipes. In case of external start sc_tdc_start_measure2() call only transfer scTDC1 to the state of waiting for the start pulse on

the device input. Currently external start feature must be switched in the inifile. Unfortunately there is no way to do that through scTDC API but this

may be changed in future.

Extracting Data
The main abstraction unit of the scTDC1 API which intend to be used for extracting processed (or raw) data from the library is a data pipe.

Application can open as many data pipes as required for operation. All of them can have their own parameters, settings and types. The only

limitation is the machine resources like memory and processor power. Due to of historical and optimisation reasons the processing happens in only

one thread. This means that amount of time required to process one data unit (some number of tdc events) is linearly growing up with number of

data pipes opened. The data processing mechanism may be changed in the future to be multithread.

Data pipe can be opened with sc_pipe_open2() call. Data can be extracted with sc_pipe_read2() call. sc_pipe_close2() call is used to close pipe

and free resources used.

Here is a little example how data pipe for 2d images can be opened and operated (2d images available only when using dld device).

int image2d_ex() // 2d image example.
{
 const uint32_t size_x = 512;
 const uint32_t size_y = 512;

 int dd = sc_tdc_init_inifile("tdc_gpx3.ini"); //init the hardware and get device descriptor
 if (dd < 0) {
 char error_description[ERRSTRLEN];
 sc_get_err_msg(dd, error_description);
 printf("error! code: %d, message: %s\n", dd, error_description);
 return dd;
 }

 struct sc_pipe_dld_image_xy_params_t prms;
 memset(&prms, 0, sizeof(prms));
 prms.depth = BS32; //4 bytes per pixel in the image
 prms.channel = -1; //all channels together
 prms.binning = {1, 1, 1};
 prms.roi = {{0,0,0}, {size_x, size_y, -1}};

 int pd = sc_pipe_open2(dd, DLD_IMAGE_XY, (void *)&prms); //init image 2d pipe and get pipe descriptor
 //can be called several times with different parameters if necessary
 if (pd < 0) {
 char error_description[ERRSTRLEN];
 sc_get_err_msg(pd, error_description);
 printf("error! code: %d, message: %s\n", pd, error_description);
 sc_tdc_deinit2(dd);
 return pd;
 }

 int ret = sc_tdc_start_measure2(dd, 200); //start 200 ms measure
 if (ret < 0) {
 char error_description[ERRSTRLEN];
 sc_get_err_msg(ret, error_description);
 printf("error! code: %d, message: %s\n", ret, error_description);
 sc_pipe_close2(dd, pd);
 sc_tdc_deinit2(dd);
 return ret;
 }

 uint32_t *image;
 //This will unblock when exposure finished. image will be set to internally
 // allocated image data. Size of the image is roi_x * roi_y * 4
 // Here it will be 512 * 512 * 4 (see prms.roi and prms.depth settings).
 // Deallocation happens when next sc_pipe_read2(), sc_pipe_close2() or
 //sc_tdc_deinit2() call.
 ret = sc_pipe_read2(dd, pd, (void **) &image, UINT32_MAX);
 if (ret < 0) {
 char error_description[ERRSTRLEN];
 sc_get_err_msg(ret, error_description);
 printf("error! code: %d, message: %s\n", ret, error_description);
 sc_pipe_close2(dd, pd);
 sc_tdc_deinit2(dd);
 return ret;
 }

https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a17cad5640ea7fda18cac602590b096ba
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a17cad5640ea7fda18cac602590b096ba
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#afbccffe9f8d461337272c77b1e8d99e9
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#affe773d3d4aacb4db040219501abdf15
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a316ec3f4f28ba07db666d6e31d0758a6
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a11d123aaa034fedaaa321e90a9f28176
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__dld__image__xy__params__t.html
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c__types_8h.html#a0ae49d912d694db36d79ce9cc88d5e6eaaff04ad1d507e6ce650ed3fd28dcb721
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#afbccffe9f8d461337272c77b1e8d99e9
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c__types_8h.html#a207ff2479453c33d928ad188b7f43ad2acc30ac51fcc74e245ee50affc0ed8eb5
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a292b239599362739468841af6ce90850
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a17cad5640ea7fda18cac602590b096ba
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a316ec3f4f28ba07db666d6e31d0758a6
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a292b239599362739468841af6ce90850
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#affe773d3d4aacb4db040219501abdf15
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a316ec3f4f28ba07db666d6e31d0758a6
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a292b239599362739468841af6ce90850

 // Here application should do necessary actions with the image.
 for (size_t i=0; i<size_x * size_y; ++i) {
 fprintf(stderr, "%08x\n", image[i]);
 }

 sc_pipe_close2(dd, pd);
 sc_tdc_deinit2(dd);
 fprintf(stderr, "\n");
 return 0;
}

Data Pipe Memory Usage Notes
Due to of non-automatic memory handling in C programming language the question of allocation and deallocation memory is very important.

Currently scTDC1 has two ways of memory treatment for data pipes. One is so called 'internal' memory allocation, when memory is allocated by

scTDC1 and deallocated in the moment when next sc_pipe_read2(), sc_pipe_close2() or sc_tdc_deinit2() called. Second one - 'external' - when

application supplies allocator callback function in data pipe parameters. In this case allocator callback function is called every time when data pipe

processing algorithm needs memory for the data. Deallocation must be performed by the application.

Simple example for statistics pipe with external allocator:

class Allocator
{
 // This is allocator class which will store all statistics in the mem_chunks_.
 //Deallocation happens when the object is destroyed.
 std::list <std::unique_ptr <unsigned char []> > mem_chunks_;
 const size_t chunk_size_;
 public:
 Allocator (size_t s) :chunk_size_(s) {}
 static int pre_alloc(void *p, void **u) {
 return (static_cast <Allocator *> (p))->alloc(u);
 }

 int alloc(void **u) {
 std::unique_ptr <unsigned char []> chunk(new unsigned char [chunk_size_]);
 memset(&(chunk[0]), 0, chunk_size_); //scTDC does not 'zeroing' memory supplied!
 *u = &(chunk[0]);
 mem_chunks_.push_back(std::move(chunk));
 return 0;
 }
};

int statistics_pipe_ex()
{
 int dd = sc_tdc_init_inifile("tdc_gpx3.ini"); //init the hardware and get device descriptor
 if (dd < 0) {
 char error_description[ERRSTRLEN];
 sc_get_err_msg(dd, error_description);
 printf("error! code: %d, message: %s\n", dd, error_description);
 return dd;
 }

 sc_pipe_statistics_params_t prms;
 memset(&prms, 0, sizeof(prms));
 Allocator mem(sizeof(statistics_t));
 prms.allocator_owner = static_cast <void *> (&mem);
 prms.allocator_cb = &(mem.pre_alloc);

 int pd = sc_pipe_open2(dd, STATISTICS, (void *)&prms);
 if (pd < 0) {
 char error_description[ERRSTRLEN];
 sc_get_err_msg(pd, error_description);
 printf("error! code: %d, message: %s\n", pd, error_description);
 sc_tdc_deinit(dd);
 return pd;
 }

 int ret = sc_tdc_start_measure2(dd, 200); // start 200 ms measure
 if (ret < 0) {
 char error_description[ERRSTRLEN];
 sc_get_err_msg(ret, error_description);
 printf("error! code: %d, message: %s\n", ret, error_description);
 sc_pipe_close2(dd, pd);
 sc_tdc_deinit(dd);
 return ret;
 }

 statistics_t *stat;

 //During measure processing engine will call mem.pre_alloc function, which
 //allocates 1k chunk of memory, save it in the list and return to the processor.
 //The next function will unblock after measure is finished. Application
 //will get back statistics in the memory, which will be deallocated when mem
 //object is destroyed. If application call sc_start_measure2 & sc_pipe_read2()
 //many times here mem object will accumulate memory chunks in the list.
 //Other nice application of this feature is making accumulation of the data
 // in the same memory space by giving always the same pointer. scTDC will not
 //'zeroed' memory supplied and data will accumulate in the same place.
 //This works for images and histograms as well.
 int ret = sc_pipe_read2(dd, pd, (void *)&stat, UINT32_MAX);
 if (ret < 0) {
 char error_description[ERRSTRLEN];
 sc_get_err_msg(ret, error_description);
 printf("error! code: %d, message: %s\n", ret, error_description);
 sc_pipe_close2(dd, pd);
 sc_tdc_deinit(dd);
 return ret;

https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a316ec3f4f28ba07db666d6e31d0758a6
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a292b239599362739468841af6ce90850
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#affe773d3d4aacb4db040219501abdf15
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a316ec3f4f28ba07db666d6e31d0758a6
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a292b239599362739468841af6ce90850
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a11d123aaa034fedaaa321e90a9f28176
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__statistics__params__t.html
https://www.surface-concept.com/downloads/apiDoc/html/structstatistics__t.html
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__statistics__params__t.html#a7943a196e5416eaa0fb4e4f1705cd257
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#afbccffe9f8d461337272c77b1e8d99e9
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c__types_8h.html#a207ff2479453c33d928ad188b7f43ad2ae564c3a2b71506c3a10f8e6c9379c02d
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a17cad5640ea7fda18cac602590b096ba
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a316ec3f4f28ba07db666d6e31d0758a6
https://www.surface-concept.com/downloads/apiDoc/html/structstatistics__t.html
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#affe773d3d4aacb4db040219501abdf15
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a316ec3f4f28ba07db666d6e31d0758a6

 }

 //Here we can do something with statistics

 sc_pipe_close2(dd, pd);
 sc_tdc_deinit2(dd);

 //Here statistics is still accessible because mem object is still on the stack.
 //If 'internal' memory allocation used this would be not true.
 return 0;
}

User Callback Interface
Since version 1.3000.0 there was new data extraction mechanism implemented. The machanism uses set of callback functions provided by user to

notify about one or another event or data delieved from the device.

Here is simple example:

#include <stdio.h>
#include <stdlib.h>
#include <scTDC.h>

struct sc_DeviceProperties3 sizes;

/* Due to of different implementation of semaphores in different operation
 systems concrete implementation is not provided here */
typedef int Semaphore;

 /* As mentioned above next function does nothing currently and must be
 implemented differently for different operation systems */
void sem_inc(Semaphore *a) {}
void sem_dec(Semaphore *a) {}

struct PrivData {
 Semaphore sem;
};

void cb_start(void *p) {
 /* this function will be called when measurement is started */
}

void cb_end(void *p) {
 /* this function will be called when measurement is finished */
 struct PrivData *d = (struct PrivData *)p;
 sem_inc(&d->sem);
}

void cb_millis(void *p) {
 /* this function will be called when millisecond tick received */
}

void cb_stat(void *p, const struct statistics_t *stat) {
 /* this function will be called when measurement statistics received */
}

void cb_tdc_event
(void *priv,
const struct sc_TdcEvent *const event_array,
size_t event_array_len)
{
 const char *buffer = (const char *) event_array;
 size_t j;
 for (j=0; j<event_array_len; ++j) {
 const struct sc_TdcEvent *obj =
 (const struct sc_TdcEvent *)(buffer + j * sizes.tdc_event_size);
 /* there must be some code doing something with tdc event which
 represeted as obj pointer.
 obj->channel, obj->time_data ... contain information about
 tdc event received */
 }
}

void cb_dld_event
(void *priv,
const struct sc_DldEvent *const event_array,
size_t event_array_len)
{
 const char *buffer = (const char *) event_array;
 size_t j;
 for (j=0; j<event_array_len; ++j) {
 const struct sc_DldEvent *obj =
 (const struct sc_DldEvent *)(buffer + j * sizes.tdc_event_size);
 /* there must be some code doing something with dld event which
 represeted as obj pointer.
 obj->dif1, obj->dif2, obj->sum ... contain information about
 dld event received */
 }
}

int main()
{
 int dd;
 int ret;
 struct PrivData priv_data;
 char *buffer;
 struct sc_pipe_callbacks *cbs;
 struct sc_pipe_callback_params_t params;
 int pd;

https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a316ec3f4f28ba07db666d6e31d0758a6
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a292b239599362739468841af6ce90850
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html
https://www.surface-concept.com/downloads/apiDoc/html/structsc___device_properties3.html
https://www.surface-concept.com/downloads/apiDoc/html/structstatistics__t.html
https://www.surface-concept.com/downloads/apiDoc/html/structsc___tdc_event.html
https://www.surface-concept.com/downloads/apiDoc/html/structsc___tdc_event.html
https://www.surface-concept.com/downloads/apiDoc/html/structsc___tdc_event.html
https://www.surface-concept.com/downloads/apiDoc/html/structsc___dld_event.html
https://www.surface-concept.com/downloads/apiDoc/html/structsc___dld_event.html
https://www.surface-concept.com/downloads/apiDoc/html/structsc___dld_event.html
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__callbacks.html
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__callback__params__t.html

 dd = sc_tdc_init_inifile("tdc_gpx3.ini");
 if (dd < 0) {
 char error_description[ERRSTRLEN];
 sc_get_err_msg(dd, error_description);
 printf("error! code: %d, message: %s\n", dd, error_description);
 return dd;
 }

 /* Please note that size of sc_pipe_callbacks, sc_TdcEvent or sc_DldEvent
 structures may be changed in next versions of api. This code example
 written in such a way that size changes will not do any incorrect code
 behaviour in such case */
 ret = sc_tdc_get_device_properties(dd, 3, &sizes);
 if (ret < 0) {
 char error_description[ERRSTRLEN];
 sc_get_err_msg(ret, error_description);
 printf("error! code: %d, message: %s\n", ret, error_description);
 return ret;
 }

 buffer = calloc(1, sizes.user_callback_size);
 cbs = (struct sc_pipe_callbacks *)buffer;
 cbs->priv = &priv_data;
 cbs->start_of_measure = cb_start;
 cbs->end_of_measure = cb_end;
 cbs->millisecond_countup = cb_millis;
 cbs->statistics = cb_stat;
 cbs->tdc_event = cb_tdc_event;
 cbs->dld_event = cb_dld_event;
 params.callbacks = cbs;

 pd = sc_pipe_open2(dd, USER_CALLBACKS, ¶ms);
 if (pd < 0) {
 char error_description[ERRSTRLEN];
 sc_get_err_msg(pd, error_description);
 printf("error! code: %d, message: %s\n", pd, error_description);
 return pd;
 }

 free(buffer);

 ret = sc_tdc_start_measure2(dd, 1000);
 if (ret < 0) {
 char error_description[ERRSTRLEN];
 sc_get_err_msg(ret, error_description);
 printf("error! code: %d, message: %s\n", ret, error_description);
 return dd;
 }

 /* In this way we wait untill measurement is finished */
 sem_dec(&priv_data.sem);

 sc_pipe_close2(dd, pd);
 sc_tdc_deinit2(dd);

 return 0;
}

Old API Notes
Function which is marked as DEPRECATED belongs to the old API which has a number of problems which in principle cannot be resolved. It is still

supported to make old applications work, but will be removed in the future. Please refrain from using it in new applications.

Generated by 1.8.7

https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a11d123aaa034fedaaa321e90a9f28176
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#acd5bccf4a12d50224608ba755bae5fe1
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__callbacks.html
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__callbacks.html#aeae9d610365521183cb79c26dfa61a1a
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__callbacks.html#aae519d3b44f749cb6695dc330426dbe9
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__callbacks.html#a06e81baf89c3c36058caad34ff08b83f
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__callbacks.html#a019798d0e97893daf116ae4f3396a77a
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__callbacks.html#aa5f1fcf2a95e4967b018814c10a4915c
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__callbacks.html#a32999f04233a3143c6743f753774005d
https://www.surface-concept.com/downloads/apiDoc/html/structsc__pipe__callbacks.html#a6e21e42f018b47df762cfb6582f07cfe
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#afbccffe9f8d461337272c77b1e8d99e9
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a17cad5640ea7fda18cac602590b096ba
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a725ca6972696496b146be6d1229c3656
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a316ec3f4f28ba07db666d6e31d0758a6
https://www.surface-concept.com/downloads/apiDoc/html/sc_t_d_c_8h.html#a292b239599362739468841af6ce90850
http://www.doxygen.org/index.html

	Intro
	Configuration
	Start Measure
	Extracting Data
	Data Pipe Memory Usage Notes
	User Callback Interface
	Old API Notes

